Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding protein-1 in triple-negative breast cancers.

نویسندگان

  • Anna L Stratford
  • Kristen Reipas
  • Kaiji Hu
  • Abbas Fotovati
  • Rachel Brough
  • Jessica Frankum
  • Mandeep Takhar
  • Peter Watson
  • Alan Ashworth
  • Christopher J Lord
  • Annette Lasham
  • Cristin G Print
  • Sandra E Dunn
چکیده

Y-box binding protein-1 (YB-1) is the first reported oncogenic transcription factor to induce the tumor-initiating cell (TIC) surface marker CD44 in triple-negative breast cancer (TNBC) cells. In order for CD44 to be induced, YB-1 must be phosphorylated at S102 by p90 ribosomal S6 kinase (RSK). We therefore questioned whether RSK might be a tractable molecular target to eliminate TICs. In support of this idea, injection of MDA-MB-231 cells expressing Flag-YB-1 into mice increased tumor growth as well as enhanced CD44 expression. Despite enrichment for TICs, these cells were sensitive to RSK inhibition when treated ex vivo with BI-D1870. Targeting RSK2 with small interfering RNA (siRNA) or small molecule RSK kinase inhibitors (SL0101 and BI-D1870) blocked TNBC monolayer cell growth by ∼100%. In a diverse panel of breast tumor cell line models RSK2 siRNA predominantly targeted models of TNBC. RSK2 inhibition decreased CD44 promoter activity, CD44 mRNA, protein expression, and mammosphere formation. CD44(+) cells had higher P-RSK(S221/227) , P-YB-1(S102) , and mitotic activity relative to CD44(-) cells. Importantly, RSK2 inhibition specifically suppressed the growth of TICs and triggered cell death. Moreover, silencing RSK2 delayed tumor initiation in mice. In patients, RSK2 mRNA was associated with poor disease-free survival in a cohort of 244 women with breast cancer that had not received adjuvant treatment, and its expression was highest in the basal-like breast cancer subtype. Taking this further, we report that P-RSK(S221/227) is present in primary TNBCs and correlates with P-YB-1(S102) as well as CD44. In conclusion, RSK2 inhibition provides a novel therapeutic avenue for TNBC and holds the promise of eliminating TICs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1)

Triple-negative breast cancers (TNBC) are notoriously difficult to treat because they lack hormone receptors and have limited targeted therapies. Recently, we demonstrated that p90 ribosomal S6 kinase (RSK) is essential for TNBC growth and survival indicating it as a target for therapeutic development. RSK phosphorylates Y-box binding protein-1 (YB-1), an oncogenic transcription/translation fac...

متن کامل

Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase

The clinical availability of small molecule inhibitors specifically targeting mutated BRAF marked a significant breakthrough in melanoma therapy. Despite a dramatic anti-tumour activity and improved patient survival, rapidly emerging resistance, however, greatly limits the clinical benefit. The majority of the already described resistance mechanisms involve a reactivation of the MAPK signalling...

متن کامل

The prometastatic ribosomal S6 kinase 2-cAMP response element-binding protein (RSK2-CREB) signaling pathway up-regulates the actin-binding protein fascin-1 to promote tumor metastasis.

Metastasis is the leading cause of death in patients with breast, lung, and head and neck cancers. However, the molecular mechanisms underlying metastases in these cancers remain unclear. We found that the p90 ribosomal S6 kinase 2 (RSK2)-cAMP response element-binding protein (CREB) pathway is commonly activated in diverse metastatic human cancer cells, leading to up-regulation of a CREB transc...

متن کامل

Molecular and Cellular Pathobiology S6 Kinase 2 Promotes Breast Cancer Cell Survival via Akt

The 40S ribosomal protein S6 kinase (S6K) acts downstream of mTOR, which plays important roles in cell proliferation, protein translation, and cell survival and is a target for cancer therapy. mTOR inhibitors are, however, of limited success. Although Akt is believed to act upstream of mTOR, persistent inhibition of p70 S6 kinase or S6K1 can activate Akt via a negative feedback loop. S6K exists...

متن کامل

Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation.

p90 ribosomal S6 kinase (RSK) is an important downstream effector of mitogen-activated protein kinase, but its biological functions are not well understood. We have now identified the first small-molecule, RSK-specific inhibitor, which we isolated from the tropical plant Forsteronia refracta. We have named this novel inhibitor SL0101. SL0101 shows remarkable specificity for RSK. The major deter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stem cells

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 2012